

Schulcurriculum Physik Jahrgang 13 (gA-Kurs)

"Atomhülle"

| Kompetenz                                                                                                                                                                                                                          | Teilkompetenz                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Die Schülerinnen und Schüler                                                                                                                                                                                                       | Die Schülerinnen und Schüler                                                                                                                                              |
| (1) erläutern die Quantisierung der Gesamtenergie von                                                                                                                                                                              | → wenden dazu das Modell vom eindimensionalen                                                                                                                             |
| Elektronen in der Atomhülle.                                                                                                                                                                                                       | Potenzialtopf mit unendlich hohen Wänden an.                                                                                                                              |
| (2) nennen die Gleichung für die Gesamtenergie eines Elektrons in diesem Modell.                                                                                                                                                   | → beschreiben die Aussagekraft und die Grenzen dieses Modells.                                                                                                            |
| (3) erläutern quantenhafte Emission anhand von Experimenten zu Linienspektren bei Licht.                                                                                                                                           | → erklären diese Beobachtungen durch die Annahme diskreter Energieniveaus in der Atomhülle.                                                                               |
| (4) erläutern einen Versuch zur Resonanzabsorption. (5)                                                                                                                                                                            | → beschreiben Wellenlängen-Intensitäts-Spektren von Licht.                                                                                                                |
| beschreiben einen Franck-Hertz-Versuch.                                                                                                                                                                                            | → deuten die Abnahme der Stromstärke un die Leuchterscheinungen in einer mit Neon gefüllten Franck-Hertz-Röhre als Folge von Anregungen von Atomen durch Elektronenstöße. |
| <ul> <li>(6)         erklären den Zusammenhang zwischen Spektrallinien         und Energieniveauschemata.</li> <li>(7)         beschreiben die Vorgänge der Fluoreszenz an einem         einfachen Energieniveauschema.</li> </ul> | → benutzen vorgelegte Energieniveauschemata zur Berechnung der Wellenlänge von Spektrallinien und ordnen gemessenen Wellenlängen Energieübergänge zu.                     |
|                                                                                                                                                                                                                                    | → berechnen die Energieniveaus von Wasserstoff mit der Balmerformel.                                                                                                      |
|                                                                                                                                                                                                                                    | → erläutern und bewerten die Bedeutung der Fluoreszenz in Leuchtstoffen an den Beispielen Leuchtstoffröhre und "weiße" LED.                                               |
| (8) beschreiben die Orbitale des Wasserstoffatoms bis n = 2.                                                                                                                                                                       | → stellen einen Zusammenhang zwischen Orbitalen und Nachweiswahrscheinlichkeiten für Elektronen anschaulich her.                                                          |